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What to expect?

Great
Developer Experience

store
API first

TypeScriptNUXT 3 VUE 3
Custom

Template

UnoCss Tailwind

Nitro Vite Vitest



Themes

What NOT to expect?

Out-of-the 
box-solution

Update
stress

Marketplace

Compatibility problems

Complete feature set
API support 
everywhere



What are good indicators for choosing 
Composable Frontends?

• Developer-Team has JS/TypeScript, 
Nuxt/Vue or React experience

• Developer-Team wants to own the frontend
• Custom corporate design and user experience
• Starting with a sub-store (sub-set of products)
• Payment Provider supports headless approach
• Needed Plugins/Apps rely on the store API



Templates

• astro (Astro + Vue)

• vue-blank (Vue + NUXT+ TypeScript)

• vue-vite-blank (Vue + Vite + TypeScript)

• vue-demo-store
(Vue + NUXT + TypeScript + UnoCSS + Tailwind)

• shopware-vercel-commerce
(React + Next.js + Tailwind, no Checkout)

https://frontends.shopware.com/getting-started/templates/astro-template.html
https://frontends.shopware.com/getting-started/templates/blank-template.html
https://frontends.shopware.com/getting-started/templates/custom-project.html
https://frontends.shopware.com/getting-started/templates/demo-store-template.html
https://github.com/shopwareLabs/vercel-commerce


How to setup

If you just want to play with the vue-demo-store:

You do not need to change any config file. 
It uses a Shopware cloud instance for the store API calls.
You can also test it on   StackBlitz.

https://stackblitz.com/github/shopware/frontends/tree/main/templates/vue-demo-store


How to setup local



Demo: https://frontends-demo.vercel.app

https://frontends-demo.vercel.app


Packages

• api-client (handcrafted, TypeScript)

• api-client-next (generated, TypeScript)

• types (TypeScript) [useless with api-client-next]

• helpers (TypeScript)

• composables (TypeScript + Vue) [Composition API]

• nuxt3-module (TypeScript + Vue + Nuxt)

• cms-base (TypeScript + Vue + Nuxt + Tailwind)

https://frontends.shopware.com/packages/api-client.html
https://www.npmjs.com/package/@shopware/api-client
https://frontends.shopware.com/framework/internal-structure.html
https://frontends.shopware.com/packages/helpers.html
https://frontends.shopware.com/packages/composables.html
https://www.npmjs.com/package/@shopware-pwa/nuxt3-module
https://frontends.shopware.com/getting-started/cms/


Demo-Store explained

Folder Structure:

🗀 assets
🗀 components
🗀 composables
🗀 i18n
🗀 layouts
🗀 pages

🗀 public
🗀 server
app.vue
nuxt.config.ts
package.json
tsconfig.json
uno.config.ts

https://nuxt.com/docs/guide/directory-structure/pages


 UnoCss Configuration (see Docu)

Presets for Tailwind CSS, Windi CSS, 
Bootstrap, Tachyons and more.

https://unocss.dev/guide/config-file


What is a "Composable"?

https://vuejs.org/guide/extras/composition-api-faq.html


Composables provide by Frontends



Composables, Data-Flow, old api-client

1

2

👩🏾🎓Auto Imports (Nuxt)

https://nuxt.com/docs/guide/concepts/auto-imports


3

4

Composables, Data-Flow, old api-client



useAsyncData (see Docu)
Unique Key for cache 
(optional)

useAsyncData is a composable meant to be called directly in a setup function, plugin, or route middleware. 
It returns reactive composables and handles adding responses to the Nuxt payload so they can be passed 
from server to client without re-fetching the data on client side when the page hydrates.

https://nuxt.com/docs/getting-started/data-fetching


useAsyncData Options

• Lazy (only client-side navigation, handle the loading state)

• Client-only fetching (server: false, with lazy: non-SEO sensitive data)

• Minimize payload size (pick only what you need)

• Caching and refetching (watch, manual refetch)

useAsyncData is Developer sugar and uses fetch (ofetch) 
under the hood. So, you can also use all fetch features.



Nuxt Dev-Tools 
during local development



Rendering Modes (see Docu)

• Universal Rendering (Full HTML, Download JS, Hydrate)

• Client-Side Rendering (Empty HTML, Download JS, Interactive)

• Hybrid Rendering (Route Rules + Nitro Caching Layer)

• Edge-Side Rendering (Hybrid + Edge Platforms)

Hint: Think about pre-rendering with the nuxt generate command. You can also use selective pre-rendering 
for specific routes. So, you can use the speed of Static site generation (SSG) AND the dynamic from 
Universal Rendering. See Nuxt Deployment Docu.

https://nuxt.com/docs/guide/concepts/rendering
https://nuxt.com/docs/getting-started/deployment


 routeRules config (Hybrid Rendering)

https://nitro.unjs.io/config


How do you organize your projects?

With Nuxt Layers😇

• Share reusable configuration presets across projects 
using nuxt.config and app.config

• Create a component library using components/directory

• Create utility and composable library using
composables/directory and utils/directory

• Create Nuxt themes and Nuxt module presets

• Share standard setup across projects

https://nuxt.com/docs/guide/directory-structure/components
https://nuxt.com/docs/guide/directory-structure/composables
https://nuxt.com/docs/guide/directory-structure/utils
https://github.com/nuxt-themes
https://www.youtube.com/watch?v=lnFCM7c9f7I
https://nuxt.com/docs/guide/going-further/layers


Missing the Eco-System?

There is no Marketplace😱 There are Nuxt Modules🚀
Examples: Storyblok, Prismic, Sanity, Stripe, Cookies 👀

Every App/Plugin that expose store API endpoints can be used✅

Every App/Plugin that changes data that is exposed via store API endpoints 
can be used (e.g., Tax-Providers, Newsletter)✅

Every Provider that supports JS/TS SDK's or npm packages can be integrated. 
Examples: Contentful, Mollie, Payone 👀

You still can provide new store API endpoints via App/Plugin and then build your custom 
component/composable. Share it with the community.💙

https://nuxt.com/modules
https://frontends.shopware.com/resources/community-modules/
https://nuxt.com/docs/guide/going-further/modules


Roadmap, Future and Links

Will there be an official Roadmap? 

⛔ Not yet.

➡️ Follow our progress on GitHub in the Project Board.

💙 Participate and create feature requests, issues and discussions.

When will Version 1.0 be released?

Check this Discussion on GitHub.😉

https://github.com/orgs/shopware/projects/12
https://github.com/shopware/frontends/discussions/145


Roadmap, Future and Links

What happened so far? 
(95 Issues solved since we moved to GitHub, April/May 2023)

• 6.5 Compatibility
• Sitemap XML (PR)
• Language Switcher (i18n, PR)
• Digital Product
• New API Client
• Performance

• Less seoURL Calls (PR)
• Hybrid Rendering / Edge Caching (PR)

• Bugfixes, other Features and more 🤷🏾

https://github.com/shopware/frontends/pull/71
https://github.com/shopware/frontends/pull/124
https://github.com/shopware/frontends/pull/194
https://github.com/shopware/frontends/pull/309


Roadmap, Future and Links

What are the next topics to work on? 

• Integration of the new API Client into Composables Package
• Improving the Test-Coverage for Composables

• RFC: Overwriting Composables (see)
• More Integrations (Examples) in general (Payments, CMS and so on)
• More Feature support for Core/B2B depending on Plan (Rise, Evolve and Beyond)
• Re-Work the Demo-Store Design (Mobile improvements, Figma Lib)

• Image-Regression Testing for Demo-Store (after Re-Work)
• Make the Demo-Store accessibility friendly
• Documentation: New API client with Examples (currently only Readme)
• Documentation: Multi-Store Setup with Language Switcher
• Documentation: How to run the Demo-Store on The Edge
• Experiments: Progressive Enhancement, Bun runtime, Nitro Streaming

https://github.com/shopware/frontends/discussions/44
https://www.npmjs.com/package/@shopware/api-client/v/0.0.0-canary-20230908103132
https://bun.sh/
https://nitro-app-edge.vercel.app/stream


Roadmap, Future and Links

Topics not good? You want us to work on something else?

https://tally.so/r/wke4De


THX @ TEAM FRONTENDS

https://github.com/shopware/frontends
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