
Quick Start – Composable Frontends

Topics

• What to expect, What not to expect?
• Templates & How to setup
• Packages & Composables
• Demo Store explained
• How to organize your projects?
• Missing the Eco-System?
• Roadmap, Future and Links

What to expect?

Great
Developer Experience

store
API first

TypeScriptNUXT 3 VUE 3
Custom

Template

UnoCss Tailwind

Nitro Vite Vitest

Themes

What NOT to expect?

Out-of-the
box-solution

Update
stress

Marketplace

Compatibility problems

Complete feature set
API support
everywhere

What are good indicators for choosing
Composable Frontends?

• Developer-Team has JS/TypeScript,
Nuxt/Vue or React experience

• Developer-Team wants to own the frontend
• Custom corporate design and user experience
• Starting with a sub-store (sub-set of products)
• Payment Provider supports headless approach
• Needed Plugins/Apps rely on the store API

Templates

• astro (Astro + Vue)

• vue-blank (Vue + NUXT+ TypeScript)

• vue-vite-blank (Vue + Vite + TypeScript)

• vue-demo-store
(Vue + NUXT + TypeScript + UnoCSS + Tailwind)

• shopware-vercel-commerce
(React + Next.js + Tailwind, no Checkout)

https://frontends.shopware.com/getting-started/templates/astro-template.html
https://frontends.shopware.com/getting-started/templates/blank-template.html
https://frontends.shopware.com/getting-started/templates/custom-project.html
https://frontends.shopware.com/getting-started/templates/demo-store-template.html
https://github.com/shopwareLabs/vercel-commerce

How to setup

If you just want to play with the vue-demo-store:

You do not need to change any config file.
It uses a Shopware cloud instance for the store API calls.
You can also test it on StackBlitz.

https://stackblitz.com/github/shopware/frontends/tree/main/templates/vue-demo-store

How to setup local

Demo: https://frontends-demo.vercel.app

https://frontends-demo.vercel.app

Packages

• api-client (handcrafted, TypeScript)

• api-client-next (generated, TypeScript)

• types (TypeScript) [useless with api-client-next]

• helpers (TypeScript)

• composables (TypeScript + Vue) [Composition API]

• nuxt3-module (TypeScript + Vue + Nuxt)

• cms-base (TypeScript + Vue + Nuxt + Tailwind)

https://frontends.shopware.com/packages/api-client.html
https://www.npmjs.com/package/@shopware/api-client
https://frontends.shopware.com/framework/internal-structure.html
https://frontends.shopware.com/packages/helpers.html
https://frontends.shopware.com/packages/composables.html
https://www.npmjs.com/package/@shopware-pwa/nuxt3-module
https://frontends.shopware.com/getting-started/cms/

Demo-Store explained

Folder Structure:

🗀 assets
🗀 components
🗀 composables
🗀 i18n
🗀 layouts
🗀 pages

🗀 public
🗀 server
app.vue
nuxt.config.ts
package.json
tsconfig.json
uno.config.ts

https://nuxt.com/docs/guide/directory-structure/pages

 UnoCss Configuration (see Docu)

Presets for Tailwind CSS, Windi CSS,
Bootstrap, Tachyons and more.

https://unocss.dev/guide/config-file

What is a "Composable"?

https://vuejs.org/guide/extras/composition-api-faq.html

Composables provide by Frontends

Composables, Data-Flow, old api-client

1

2

👩🏾🎓Auto Imports (Nuxt)

https://nuxt.com/docs/guide/concepts/auto-imports

3

4

Composables, Data-Flow, old api-client

useAsyncData (see Docu)
Unique Key for cache
(optional)

useAsyncData is a composable meant to be called directly in a setup function, plugin, or route middleware.
It returns reactive composables and handles adding responses to the Nuxt payload so they can be passed
from server to client without re-fetching the data on client side when the page hydrates.

https://nuxt.com/docs/getting-started/data-fetching

useAsyncData Options

• Lazy (only client-side navigation, handle the loading state)

• Client-only fetching (server: false, with lazy: non-SEO sensitive data)

• Minimize payload size (pick only what you need)

• Caching and refetching (watch, manual refetch)

useAsyncData is Developer sugar and uses fetch (ofetch)
under the hood. So, you can also use all fetch features.

Nuxt Dev-Tools
during local development

Rendering Modes (see Docu)

• Universal Rendering (Full HTML, Download JS, Hydrate)

• Client-Side Rendering (Empty HTML, Download JS, Interactive)

• Hybrid Rendering (Route Rules + Nitro Caching Layer)

• Edge-Side Rendering (Hybrid + Edge Platforms)

Hint: Think about pre-rendering with the nuxt generate command. You can also use selective pre-rendering
for specific routes. So, you can use the speed of Static site generation (SSG) AND the dynamic from
Universal Rendering. See Nuxt Deployment Docu.

https://nuxt.com/docs/guide/concepts/rendering
https://nuxt.com/docs/getting-started/deployment

 routeRules config (Hybrid Rendering)

https://nitro.unjs.io/config

How do you organize your projects?

With Nuxt Layers😇

• Share reusable configuration presets across projects
using nuxt.config and app.config

• Create a component library using components/directory

• Create utility and composable library using
composables/directory and utils/directory

• Create Nuxt themes and Nuxt module presets

• Share standard setup across projects

https://nuxt.com/docs/guide/directory-structure/components
https://nuxt.com/docs/guide/directory-structure/composables
https://nuxt.com/docs/guide/directory-structure/utils
https://github.com/nuxt-themes
https://www.youtube.com/watch?v=lnFCM7c9f7I
https://nuxt.com/docs/guide/going-further/layers

Missing the Eco-System?

There is no Marketplace😱 There are Nuxt Modules🚀
Examples: Storyblok, Prismic, Sanity, Stripe, Cookies 👀

Every App/Plugin that expose store API endpoints can be used✅

Every App/Plugin that changes data that is exposed via store API endpoints
can be used (e.g., Tax-Providers, Newsletter)✅

Every Provider that supports JS/TS SDK's or npm packages can be integrated.
Examples: Contentful, Mollie, Payone 👀

You still can provide new store API endpoints via App/Plugin and then build your custom
component/composable. Share it with the community.💙

https://nuxt.com/modules
https://frontends.shopware.com/resources/community-modules/
https://nuxt.com/docs/guide/going-further/modules

Roadmap, Future and Links

Will there be an official Roadmap?

⛔ Not yet.

➡️ Follow our progress on GitHub in the Project Board.

💙 Participate and create feature requests, issues and discussions.

When will Version 1.0 be released?

Check this Discussion on GitHub.😉

https://github.com/orgs/shopware/projects/12
https://github.com/shopware/frontends/discussions/145

Roadmap, Future and Links

What happened so far?
(95 Issues solved since we moved to GitHub, April/May 2023)

• 6.5 Compatibility
• Sitemap XML (PR)
• Language Switcher (i18n, PR)
• Digital Product
• New API Client
• Performance

• Less seoURL Calls (PR)
• Hybrid Rendering / Edge Caching (PR)

• Bugfixes, other Features and more 🤷🏾

https://github.com/shopware/frontends/pull/71
https://github.com/shopware/frontends/pull/124
https://github.com/shopware/frontends/pull/194
https://github.com/shopware/frontends/pull/309

Roadmap, Future and Links

What are the next topics to work on?

• Integration of the new API Client into Composables Package
• Improving the Test-Coverage for Composables

• RFC: Overwriting Composables (see)
• More Integrations (Examples) in general (Payments, CMS and so on)
• More Feature support for Core/B2B depending on Plan (Rise, Evolve and Beyond)
• Re-Work the Demo-Store Design (Mobile improvements, Figma Lib)

• Image-Regression Testing for Demo-Store (after Re-Work)
• Make the Demo-Store accessibility friendly
• Documentation: New API client with Examples (currently only Readme)
• Documentation: Multi-Store Setup with Language Switcher
• Documentation: How to run the Demo-Store on The Edge
• Experiments: Progressive Enhancement, Bun runtime, Nitro Streaming

https://github.com/shopware/frontends/discussions/44
https://www.npmjs.com/package/@shopware/api-client/v/0.0.0-canary-20230908103132
https://bun.sh/
https://nitro-app-edge.vercel.app/stream

Roadmap, Future and Links

Topics not good? You want us to work on something else?

https://tally.so/r/wke4De

THX @ TEAM FRONTENDS

https://github.com/shopware/frontends

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

